Running Raspberry Pi off a battery (Shallow Thoughts)

Akkana's Musings on Open Source Computing and Technology, Science, and Nature.

Sat, 18 May 2013

Running Raspberry Pi off a battery

In my post about Controlling a toy car with a Raspberry Pi, I skipped over one important detail: the battery. How do you power the RPi while it's driving around the room?

Most RPi sites warn that you shouldn't use the Pi with a power supply drawing less than an amp. I suspect that's overstated, and it probably doesn't draw more than half of that most of the time; but add the draw of two motors and we're talking a fairly beefy battery, not a couple of AAs or a 9V.

Luckily, as an R/C plane pilot, I have a fridge full of small 2- and 3-cell lithium-polymer batteries (and a li-po charger to go with them). The problem is: the Pi is rather picky about its input voltage. It wants 5V and nothing else. A 2-cell li-po is 7.4V. So I needed some sort of voltage regulator.

[5V voltage regulator] It's easy enough to get a simple 5V voltage regulator (pictured at right) -- 30c at Jameco, not much more locally. But they're apparently fairly inefficient, and need a heat sink for high current loads. [5V step-down power converter] So I decided to blow the big bucks ($15) for a 5V step-down power converter (left) that claims to be 94% efficient with no need for a heat sink.

Unlike most of Adafruit's products, this one comes with no tutorials and no hints as to pinouts, but after a little searching, I determined that the pins worked the same way as the cheap voltage regulators. With the red logo facing you, the left pin (your left) is input power from the battery; middle is ground (connect this to the battery's ground which is shared with the Pi's ground); the right pin is the regulated 5V output, which goes to pin 2 on the Pi's GPIO connector.

I was able to run both the RPi and the motor drive circuit off the same 7.4 volt 2-cell li-po battery (which almost certainly wouldn't work with 4 AAs, though it might work with 8). A 500 mAh battery seems to be plenty to drive the RPi and the car, though I don't know how long the battery life will be. I'll probably be using 610 mAh batteries for most of my testing, since I have a collection of them for the aerial combat planes.

Here's a wiring diagram made with Fritzing showing how to hook up the battery to power a RPi. If you're driving motors, you can run a line from the battery's + terminal (the left pin of the voltage regulator) as your motor voltage source, and use the right pin as your 5V logic source for whatever motor controller chip you're using.
[Battery-powered Raspberry Pi]

Tags: , , ,
[ 17:50 May 18, 2013    More hardware | permalink to this entry | ]

Comments via Disqus:

blog comments powered by Disqus