Shallow Thoughts : : astro

Akkana's Musings on Open Source Computing and Technology, Science, and Nature.

Sat, 25 Jul 2020

S is for Starlink Satellites

[Comet Neowise and Starlink Satellites] Monday was the last night it's been clear enough to see Comet Neowise. I shot some photos with the Rebel, but I haven't quite figured out the alignment and stacking needed for decent astrophotos, so I don't have much to show. I can't even see the ion tail.

The interesting thing about Monday besides just getting to see the comet was the never-ending train of satellites.

Read more ...

Tags: , ,
[ 20:27 Jul 25, 2020    More science/astro | permalink to this entry | comments ]

Thu, 16 Jul 2020

Comet C/2020 F3 NEOWISE in the evening sky

[Comet C2020 F3 NEOWISE the morning of 2020-07-16 from White Rock, NM] Comet C/2020 F3 NEOWISE continues to improve, and as of Tuesday night it has moved into the evening sky (while also still being visible in the morning for a few more days).

I caught it Tuesday night at 9:30 pm. The sky was still a bit bright, and although the comet was easy in binoculars, it was a struggle to see it with the unaided eye. However, over the next fifteen minutes the sky darkened, and it looked pretty good by 9:50, considering the partly cloudy sky. I didn't attempt a photograph; this photo is from Sunday morning, in twilight and with a bright moon.

Read more ...

Tags: , , , ,
[ 12:58 Jul 16, 2020    More science/astro | permalink to this entry | comments ]

Sat, 11 Jul 2020

Comet C2020 F3 NEOWISE in the Morning (and eventually, the evening)

[Comet C2020F3 NEOWISE over California desert landscape, by Dbot3000]
Comet C2020F3 NEOWISE over California desert landscape. Photo by Dbot3000

I've learned not to get excited when I read about a new comet. They're so often a disappointment. That goes double for comets in the morning sky: I need a darned good reason to get up before dawn.

But the chatter among astronomers about the current comet, C2020 F3 NEOWISE, has been different. So when I found myself awake at 4 am, I grabbed some binoculars and went out on the deck to look.

And I was glad I did. NEOWISE is by far the best comet I've seen since Hale-Bopp. Which is not to say it's in Hale-Bopp's class -- certainly not. But it's easily visible to the unaided eye, with a substantial several-degree-long tail. Even in dawn twilight. Even with a bright moon. It's beautiful!

Update: the morning after I wrote that, I did get a photo, though it's not nearly as good as Dbot3000's that's shown here.


Read more ...

Tags: , , , ,
[ 18:18 Jul 11, 2020    More science/astro | permalink to this entry | comments ]

Sat, 20 Jun 2020

Solstice Sun Dagger

Today is the summer solstice. Happy solstice!

[Solstice sun dagger] When I was in grade school -- probably some time around 7th grade -- I happened upon an article in Scientific American about the Anasazi Sun Dagger on Fajada Butte in Chaco Canyon. On the solstices and equinoxes, a thin dagger of light is positioned just right so that it moves across a spiral that's carved into the rock.

I was captivated. What an amazing sight it must be, I thought. I wondered if ordinary people were allowed to go see it.

Well, by the time I was old enough to do my own traveling, the answer was pretty much no. Too many people were visiting Fajada Butte ...

Read more ...

Tags: ,
[ 17:35 Jun 20, 2020    More science/astro | permalink to this entry | comments ]

Sun, 01 Mar 2020

Plotting Epicycles

Galen Gisler, our master of Planetarium Tricks, presented something strange and cool in his planetarium show last Friday.

[inner planet orbits from north ecliptic pole, with Venus pentagram] He'd been looking for a way to visualize the "Venus Pentagram", a regularity where Venus' inferior conjunctions -- the point where Venus is approximately between Earth and the Sun -- follow a cycle of five. If you plot the conjunction positions, you'll see a pentagram, and the sixth conjunction will be almost (but not quite) in the same place where the first one was. Supposedly many ancient civilizations supposedly knew about this pattern, though as Galen noted (and I'd also noticed when researching my Stonehenge talk), the evidence is sometimes spotty.

Galen's latest trick: he moved the planetarium's observer location up above the Earth's north ecliptic pole. Then he told the planetarium to looked back at the Earth and lock the observer's position so it moves along with the Earth; then he let the planets move in fast-forward, leaving trails so their motions were plotted.

The result was fascinating to watch. You could see the Venus pentagram easily as it made its five loops toward Earth, and the loops of all the other planets as their distance from Earth changed over the course of both Earth's orbits and theirs.

You can see the patterns they make at right, with the Venus pentagram marked (click on the image for a larger version). Venus' orbit is white, Mercury is yellow, Mars is red. If you're wondering why Venus' orbit seems to go inside Mercury's, remember: this is a geocentric model, so it's plotting distance from Earth, and Venus gets both closer to and farther from Earth than Mercury does.

He said he'd shown this to the high school astronomy club and their reaction was, "My, this is complicated." Indeed. It gives insight into what a difficult problem geocentric astronomers had in trying to model planetary motion, with their epicycles and other corrections.

Of course that made me want one of my own. It's neat to watch it in the planetarium, but you can't do that every day.

So: Python, Gtk/Cairo, and PyEphem. It's pretty simple, really. The goal is to plot planet positions as viewed from high above the north ecliptic pole: so for each time step, for each planet, compute its right ascension and distance (declination doesn't matter) and convert that to rectangular coordinates. Then draw a colored line from the planet's last X, Y position to the new one. Save all the coordinates in case the window needs to redraw.

[planet orbits from north ecliptic pole] At first I tried using Skyfield, the Python library which is supposed to replace PyEphem (written by the same author). But Skyfield, while it's probably more accurate, is much harder to use than PyEphem. It uses SPICE kernels (my blog post on SPICE, some SPICE examples and notes), which means there's no clear documentation or list of which kernels cover what. I tried the kernels mentioned in the Skyfield documentation, and after running for a while the program died with an error saying its model for Jupiter in the de421.bsp kernel wasn't good beyond 2471184.5 (October 9 2053).

Rather than spend half a day searching for other SPICE kernels, I gave up on Skyfield and rewrote the program to use PyEphem, which worked beautifully and amazed me with how much faster it was: I had to rewrite my GTK code to use a timer just to slow it down to where I could see the orbits as they developed!

It's fun to watch; maybe not quite as spacey as Galen's full-dome view in the planetarium, but a lot more convenient. You need Python 3, PyEphem and the usual GTK3 introspection modules; on Debian-based systems I think the python3-gi-cairo package will pull in most of them as dependencies.

Plot your own epicycles: epicycles.py.

Tags: , , ,
[ 13:04 Mar 01, 2020    More science/astro | permalink to this entry | comments ]

Tue, 10 Dec 2019

Planetarium Show Friday: Hitchhiker's Guide to the Moon

[Schroter's Valley on the Moon] This Friday, Dave and I will be presenting a planetarium show called The Hitchhiker's Guide to the Moon: Visit the Moon Without Leaving Your Home Planet.

I'm jazzed about this show. I think it'll be the most fun planetarium show we've given so far. We'll be showing a variety of lunarfeatures: maria, craters, mountains, rilles, domes, catenae and more. For each one, we'll discuss what the feature actually is and how it was created, where to see good examples on the moon, and -- the important part -- where you can go on Earth, and specifically in the Western US, to see a similar feature up close.

Plus: a short flyover of some of the major features using the full-dome planetarium. Some features, like Tycho, the Straight Wall, Reiner Gamma, plus lots of rilles, look really great in the planetarium.

If you can't get to the moon yourself, this is the next best thing!

The Hitchhiker's Guide to the Moon: 7pm at the PEEC nature center. Admission is free. Come find out how to explore the moon without leaving your home planet!

Tags: , ,
[ 18:06 Dec 10, 2019    More science/astro | permalink to this entry | comments ]

Mon, 11 Nov 2019

Mercury Transit: Comparing Between H-alpha and White Light

[Mercury transit 11/11/2019] The Mercury transit is over. But we learned some interesting things.

I'd seen Mercury transits before, but this is the first time we had an H-alpha scope (a little 50mm Coronado PST) in addition to a white light filter (I had my 102mm refractor set up with the Orion white-light filter).

As egress approached, Dave was viewing in the H-alpha while I was on the white light scope. When I saw the black-drop effect at third contact, Mercury was still nowhere near the edge in the H-alpha: the H-alpha shows more of the solar atmosphere so the sun's image is noticably bigger. This was the point when we realized that we should have expected this and been timing and recording. Alas, it was too late.

Mercury was roughly 60% out in the white light filter -- just past the point where the "bite" it made in the limb of the sun -- by the time Dave called out third contact. We guessed it was roughly a minute, but that could be way off.

For fourth contact, Dave counted roughly 45 seconds between when I couldn't see Mercury any more and when he lost track of it. This is pretty rough, because it was windy, seeing was terrible and there was at least a 15-second slop when I wasn't sure if I could any indentation in the limb; I'm sure it was at least as hard in the Coronado, which was running at much lower magnification.

So we had a chance to do interesting science and we flubbed it. And the next chance isn't til 2032; who knows if we'll still be actively observing then.

I wanted to at least correlate those two numbers: 45 seconds and 60% of a Mercury radius.

Mercury is about 10" (arcseconds) right now. That was easy to find. But how fast does it move? I couldn't find anything about that, searching for terms like mercury transit angular speed OR velocity. I tried to calculate it with PyEphem but got a number that was orders of magnitude off. Maybe I'll figure it out for a later article, but I wanted to get this posted quickly.

[Mercury transit 11/11/2019 in H-alpha] I didn't spend much time trying photography. I got a couple afocal snaps with my pocket digital camera through the white-light scope that worked out pretty well. I wasn't sure that would work for the Coronado: the image is fairly dim. The snaps I did get show Mercury, though none of the interesting detail like faculae and the one tiny prominence that was visible. But the interesting thing is the color. To the eye, the H-alpha scope image is a slightly orangy red, but in the digital camera it came out a startling purplish pink. This may be due to the digital camera's filters passing some IR, confusing the algorithms that decide how to shift the color. Of course, I could have adjusted the color in GIMP back to the real color, but I thought it was more interesting to leave it the hue it came out of the camera. (I did boost contrast and run an unsharp mask filter, to make it easier to see Mercury.)

Anyway, fun and unexpectedly edifying! I wish we had another transit happening sooner than 2032.

Tags: ,
[ 12:15 Nov 11, 2019    More science/astro | permalink to this entry | comments ]

Fri, 08 Nov 2019

Mercury Transit Next Monday

[Mercury Transit 2006, photo by Brocken Inaglory]
Mercury Transit 2006, photo by Brocken Inaglory
Next Monday, November 11, is a transit of Mercury across the sun.

Mercury transits aren't super rare -- not once- or twice-in-a-lifetime events like Venus transits -- but they're not that common, either. The last Mercury transit was in 2016; the next one won't happen til 2032.

This year's transit isn't ideal for US observers. The transit will already be well underway by the time the sun rises, at least in the western US. Here in New Mexico (Mountain time), the sun rises with Mercury transiting, and the transit lasts until 11:04 MST. Everybody else, check timeanddate's Mercury Transit page for your local times.

Mercury is small, unfortunately, so it's not an easy thing to see without magnification. Of course, you know that you should never look at the sun without an adequate filter. But even if you have safe "eclipse glasses", it may be tough to spot Mercury's small disk against the surface of the sun.

[binocular projection of a solar eclipse] One option is to take some binoculars and use them to project an image. Point the big end of the binoculars at the sun, and the small end at a white surface, preferably leaning so it's perpendicular to the sun. I don't know if binocular projection will give a big enough image to show Mercury, so a very smooth and white background, tilted so it's perpendicular to the sun, will help. (Don't be tempted to stick eclipse glasses in front of a binocular or telescope and look through the eyepiece! Stick to projection unless you have filters specifically intended for telescopes or binoculars.)

Of course, a telescope with a safe solar filter is the best way to see a transit. If you're in the Los Alamos area, I hear the Pajarito Astronomers are planning to set up telescopes at Overlook Park. They don't seem to have announced it in any of the papers yet, but I see it listed on the Pajarito Astronomers website. There's also an event planned at the high school where the students will be trying to time Mercury's passage, but I don't know if that's open to the public. Elsewhere in the world, check with your local astronomy club for Mercury transit parties: I'm sure most clubs have something planned.

I was discussing the transit with a couple of local astronomers earlier this week, and one of them related it to the search for exoplanets. One of the main methods of detecting exoplanets is to measure the dimming of a star's light as a planet crosses its face. For instance, in 55 Cancri e, you can see a dimming as the planet crosses the star's face, and a much more subtle dimming when the planet disappears behind the star. As Mercury crosses the Sun's face, it blocks some of the sun's light in the same way. By how much?

The radius of Mercury is 0.0035068 solar radii, and the dimming is proportional to area so it should be 0.00350682, or 0.0000123, a 0.00123% dimming. Not very much!

But it looks like in the 55 Cancri e case, they're detecting dips of around .001% -- it seems amazing that you could detect a planet as small as Mercury this way (and certainly the planet is much bigger in the case of 55 Cancri e) ... but maybe it's possible.

Anyway, it's fun to think about exoplanets as you watch tiny Mercury make its way across the face of the Sun. Wherever you are, I hope you get a chance to look!

Update: A report from the transit: Mercury Transit: Comparing Between H-alpha and White Light.

Tags: ,
[ 11:36 Nov 08, 2019    More science/astro | permalink to this entry | comments ]